Search

Colloidal Dispersions and How to Measure Their Stability

A colloidal dispersion is composed of solid, liquid, or gas particles dispersed in a continuous phase (solid, liquid, or gas). “Colloidal” refers to particles with at least one dimension ranging from 1nm to 1µm. The most encountered colloidal dispersions are solid-liquid (suspensions), liquid-liquid (emulsions), gas-liquid (foams), and solid-gas (aerosols) dispersions.

Colloidal dispersions are inherently thermodynamically unstable systems because they tend to minimize surface energy. Hence, the stability of a colloidal system is inevitably linked to a notion of time, defined by the process, use, and application involved.

颗粒尺寸分析 - 产品概览


Microtrac提供满足各中颗粒分析技术的设备

Stability of colloidal dispersions

Two stability categories can be distinguished: colloidal stability and gravitational stability.

1.       Colloidal stability relates to particle size change (e.g., aggregation or agglomeration). If particles are not subject to size variation, the dispersion is considered colloidally stable. Hence, colloidal stability depends on several types of interactions such as:

  • Van der Walls and electrostatic interactions (classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory)
  • Steric interactions (e.g., polymer adsorption)
  • Hydrophobic effect
2.        Gravitational stability refers to the ability of particles to resist particle migration (e.g., sedimentation or creaming) and mainly depends on the rheological properties of the colloidal dispersion such as viscosity and density of the continuous phase, size, and density of the particle. For diluted colloidal particles in a Newtonian fluid, this migration phenomenon can be described by Stokes' law.

Sedimentation is sometimes confusingly considered as colloidal instability.

For example, a particle dispersion in a solvent can be colloidally stable (there is no change in particle size) while it is gravitationally unstable (particles settle due to unmatched density with the solvent).

It is worth noting that destabilizing colloidal dispersion can lead to gravitational instability (larger particles start to settle quickly).

How to measure colloidal dispersion stability?

Electrophoretic light scattering (ELS) is a common technique used to evaluate the potential of dispersion to remain stable. ELS allows measuring the zeta potential of a dispersion, which provides information about electrostatic interactions and, by extrapolation, their tendency to agglomerate. The zeta-potential is a reliable indicator of dispersion stability, but several parameters such as steric effects, sedimentation, or hydrophobic effects, will also have a strong influence. Consequently, relying on zeta-potential values can only lead to false stability interpretations, for example, with metal nanoparticles in complex media, aqueous silica sol, and oil in water emulsions.

The SMLS technique offers solid advantages for the characterization of destabilizing phenomena. Both gravitational and colloidal stability of dispersions can be assessed with minimal sample handling. More importantly, results are obtained by analyzing formulations in their native states, thus ensuring the representativity of the results.

At Microtrac, we propose a range of SMLS-based devices, Turbiscan , that provide quantitative stability analysis up to 1,000 times faster than conventional tests. If you would like any more information, please do not hesitate to contact us .

联系我们获取免费的建议

颗粒表征 - 联系我们!

最终选择使用简单的筛分、激光衍射或者使动态图像技术 主要取决于测试的样品量、预算、人员、客户要求和采用的国际标准。 为何不联系Microtrac进行免费咨询,看看哪种解决方案能带来您所需要的结果和投资回报。